PETROLOGÍA METAMÓRFICA Y GEOCRONOLOGÍA DE LA UNIDAD CULMINANTE DEL COMPLEJO DE ÓRDENES EN LA REGIÓN DE CARBALLO (GALICIA, NW DEL MACIZO IBÉRICO)

Jacobo Abati Gómez
PETROLOGÍA METAMÓRFICA Y GEOCRONOLOGÍA DE LA UNIDAD CULMINANTE DEL COMPLEJO DE ÓRDENES EN LA REGIÓN DE CARBALLO (GALICIA, NW DEL MACIZO IBÉRICO)

 Jacobo Abati Gómez
Fotografía de cubierta: J. Abati
Sección de anfibolita de la Serie de Órdenes con ortoanfibol, cordierita, granate, biotita, plagioclásica ilmenita y cuarzo.

Maquetación y Portada: Fernando López

FICHA DE CATALOGACIÓN

ABATI GÓMEZ, Jacobo

Petrología metamórfica y geocronología de la unidad culminante del Complejo de Órdenes en la región de Carballo (Galicia, NW del Macizo Ibérico) / Jacobo Abati Gómez.-- Edición do Castro. Laboratorio Xeolóxico de Laxe. Area de Xeoloxía e Minería do Seminario de Estudos Galegos, 2002. 269 pp.; 21 tabl.; 63 fig.; 15 lám.; 24 cm; (Serie Nova Terra; 20)

I. Laboratorio Xeolóxico de Laxe, ed. II. Seminario de Estudos Galegos. Area de Xeoloxía e Minería, ed. III. Serie
RESUMEN

En esta memoria se presenta el resultado de un estudio integrado de petrología metamórfica y geocronología U-Pb realizado en el sector occidental de la unidad culminante del Complejo de Órdenes. Este complejo es la más extensa de las estructuras aóctonas que afloran en el NW del Macizo Ibérico, caracterizadas por la presencia de varias láminas de origen oceánico que marcan una de las principales suturas del Orógeno Varisco Europeo. El origen de los terrenos situados por encima de la sutura, que colisionaron con el margen septentrional de Gondwana hacia el Devónico Medio, permanece sujeto a debate.

La datación de los principales tipos de rocas ígneas y de fábricas metamórficas, en conjunto con el estudio de su evolución P-T, ha permitido el descubrimiento de un ciclo orogénico pre-varisco en la unidad culminante, poniendo por tanto de manifiesto su naturaleza poliorogénica. Las condiciones máximas de metamorfismo en el área estudiada varían entre las facies de las granulitas y las facies de las anfibolitas, y han podido distinguirse dos láminas con evoluciones metamórficas diferentes: una lámina inferior con metamorfismo granulítico de media-P o transicional hacia alta-P, y una lámina superior con metamorfismo en facies de las anfibolitas.

La lámina inferior comprende el macizo de gabros de Monte Castelo y las litologías asociadas, donde se han identificado dos tipos de granulitas: unas provienen de la recristalización del gabro en zonas de cizalla de alta-T próximas a su base (granulitas básicas), y otras se desarrollan a partir de los enclaves sedimentarios que se encuentran en su interior (granulitas metasedimentarias). Ambos tipos de granulitas reflejan condiciones P-T semejantes y presentan una evolución metamórfica común. Su trayectoria P-T ha sido calculada mediante termobarometría convencional y multiequilibrio (método TWQ), y se caracteriza por una fuerte presurización a altas temperaturas que alcanza unos 10 Kbar y más de 800 °C.

La lámina superior está formada por metasedimentos y cuerpos más pequeños de gabros y ortogneises, con un metamorfismo que alcanza la primera zona de la sillimanita. Los dos cuerpos gabbroicos más importantes de la lámina superior son los gabros de Oza y Barrañán. En los contactos entre estos gabros y los metasedimentos de la Serie de Órdenes se han encontrado varios afloramientos de anfibolitas pobres en Ca. Estas litologías desarrollan asociaciones minerales complejas, generalmente adecuadas para el estudio de sus condiciones P-T de formación. Dada la intensa retrogradación y la composición desfavorable de los metasedimentos de la Serie de Órdenes en este sector, se ha preferido utilizar estas anfibolitas para el estudio de la evolución metamórfica. La trayectoria obtenida refleja una descompresión aproximadamente isotérmica a unos 650 °C.

El contacto entre las dos láminas mencionadas, teniendo en cuenta el salto metamórfico sustracti vo existente entre ellas, es interpretado como un accidente extensional. El estudio cinemático de la zona de intensa deformación que existe entre las dos láminas, marcada finalmente por el desarrollo de filonitas a partir de los metasedimentos y de algunos cuerpos graníticos deformados asociados a la zona de contacto, indica movimiento del techo hacia el S – SW. No se ha podido determinar la edad de este accidente, que refleja un adelgazamiento cortical que podría corresponder al ciclo Ordovícico o al ciclo Varisco (véase el capítulo 3).
La trayectoria P-T deducida para las granulitas indica un engrosamiento cortical considerable que se produce a altas temperaturas, en el campo de la sillimanita. De acuerdo con los modelos térmicos existentes, este tipo de trayectoria sólo es compatible con una región calentada por un intenso magmatismo de forma previa y/o durante un engrosamiento cortical, lo que resulta característico de arcos magmáticos. La trayectoria de la lámina superior refleja el enterramiento de un nivel situado inicialmente más alejado de los cuerpos ígneos, puesto que no se registra un calentamiento tan intenso. La descompresión isotérmica indica una exhumación a la que probablemente han contribuido procesos tectónicos.

Las dataciones U-Pb de circones del gabro de Monte Castelo (499 ± 2 Ma) y de un granitoide (500 ± 2 Ma) indican la existencia de un evento magmático bimodal próximo al límite Cámbrico – Ordovícico. Las edades de monacitas obtenidas en una granulita metapelítica y en dos muestras de paragneises de la zona de la sillimanita de la Serie de Órdenes (493 – 498 Ma) indican que el metamorfismo regional fue prácticamente sincrónico con el magmatismo. También se analizaron rutilos de la misma muestra de granulitas, que proporcionan una edad entre 380 y 390 Ma que se interpreta como el momento de la incorporación de la unidad culminante a la cuña orogénica varisca.

Como consecuencia de todo lo anterior, la unidad culminante se considera originada en un arco magmático, probablemente en un arco de islas, desarrollado durante el Ordovícico Inferior. Fragmentos de este arco fueron posteriormente incorporados al margen de Gondwana durante la colisión varisca, produciéndose la superposición de un metamorfismo en facies de los esquistos verdes al metamorfismo previo de mayor grado.
PETROLOGÍA METAMÓRFICA Y GEOCRONOLOGÍA DE LA UNIDAD CULMINANTE DEL COMPLEJO DE ÓRDENES EN LA REGIÓN DE CARBALLO (GALICIA, NW DEL MACIZO IBÉRICO)
ÍNDICE

CAPÍTULO 1

1. INTRODUCCIÓN ... 17
 1.1. Localización del área estudiada 18
 1.2. Objetivos ... 20
 1.3. Síntesis de la geología del Orógeno Variscon en la Península Ibérica 22

CAPÍTULO 2

2. GEOLOGÍA DEL COMPLEJO DE ÓRDENES 27
 2.1. Unidades basales .. 29
 2.2. Unidades ofiolíticas .. 37
 2.2.1. Unidad de Vila de Cruces 38
 2.2.2. Unidades de Careón y Bazar-Carballo 41
 2.3. Unidades superiores .. 46
 2.3.1. Unidad de alta presión y alta temperatura (AP-AT) 46
 2.3.2. Unidad culminante de media presión (MP) 51

CAPÍTULO 3

3. LA UNIDAD CULMINANTE DEL COMPLEJO DE ÓRDENES EN LA REGIÓN DE CARBALLO ... 57
 3.1. Macroestructura .. 57
 3.2. Descripción de las principales litologías 59
 3.2.1. Lámina Inferior ... 59
 El gabro de Monte Castelo .. 59
Enclaves metapelíticos en el gabro de Monte Castelo ... 60
Las rocas basales de la unidad culminante ... 62
3.2.2. El contacto entre las dos láminas ... 63
3.2.3. Lámina Superior .. 63
3.3. Edad del despegue extensional que separa las dos láminas 65
3.4. Cinemática de las fábricas de bajo grado (facciones de los esquistos verdes) 68
3.4.1. Microestructuras en los paragneises filonitizados ... 69
3.4.2. Microestructuras en los granitoides filonitizados ... 69
3.5. Petrografía .. 69
3.5.1. Granulitas en cizallas en la base del gabro de Monte Castelo (granulitas básicas) 70
3.5.2. Enclaves metasedimentarios en el gabro de Monte Castelo (granulitas metapelíticas) ... 73
3.5.3. Granitoides situados en el contacto entre las dos láminas 75
3.5.4. Metasedimentos de la Serie de Órdenes .. 77
3.5.5. Anfibolitas pobres en Ca ... 78

CAPÍTULO 4

4. QUÍMICA MINERAL Y TERMOBAROMETRÍA ... 85
4.1. Granulitas básicas y granulitas metapelíticas ... 87
4.1.1. Química mineral .. 87
 Granate .. 87
 Ortopiroxeno ... 98
 Plagioclasa .. 99
 Biotita .. 100
 Anfibol .. 101
 Óxidos de Fe-Ti ... 103
4.1.2. Termobarometría ... 105
 4.1.2.1. Termobarometría multiequilibrio en granulitas 105
 4.1.2.2. Termobarometría convencional .. 114
4.2. Anfibolitas pobres en Ca .. 123
4.2.1. Química mineral .. 123
 Granate .. 123
 Anfiboles ferromagnesianos ... 124
 Plagioclasa .. 128
 Biotita .. 129
 Cordierita .. 129
 Estaurolita ... 130
 Óxidos de Fe-Ti ... 130
4.2.2. Estimación de las condiciones P-T .. 130

CAPÍTULO 5

5. TRAYECTORIAS P-T Y ORIGEN DE LAS GRANULITAS DE LA UNIDAD CULMINANTE 139
5.1. Evolución P-T de las granulitas de la unidad culminante 139
5.2. Evolución P-T de las anfibolitas pobres en Ca ... 149
CAPÍTULO 6

6. GEOCRONOLOGÍA ... 153
 6.1. Investigaciones geocronológicas previas en las unidades superiores de los
 complejos alóctonos ... 153
 6.2. Descripción de las muestras y resultados geocronológicos 158
 6.3. Discusión ... 168
 6.3.1. Edad del magmatismo ... 168
 6.3.2. Edades del metamorfismo 168

CAPÍTULO 7

7. ORIGEN DE LA UNIDAD CULMINANTE: CONTEXTO GEODINÁMICO E
 IMPLICACIONES PARA LAS INTERACCIONES GONDWANA-LAURENTIA
 DURANTE EL PALEOZOICO INFERIOR 175
 7.1. Contexto geodinámico .. 175
 7.2. Implicaciones para las interacciones Gondwana-Laurentia durante el Paleozoico Inferior ... 178
 7.2.1. Introducción ... 178
 7.2.2. Relaciones entre la unidad culminante y la evolución de los continentes paleozoicos ... 179

CAPÍTULO 8

8. CONCLUSIONES .. 187
 8.1. Evolución tectonometamórfica ... 187
 8.2. Geocronología .. 188
 8.3. Conclusiones y discusión general respecto al origen y evolución de la unidad culminante del Complejo de Órdenes 189

REFERENCIAS

REFERENCIAS .. 195

APÉNDICE 1

TÉCNICAS ANALÍTICAS U-Pb ... 215

APÉNDICE 2

ANÁLISIS DE MINERALES ... 227